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1. Introduction

At the core of Quantum Field Theory (QFT) lies the representation theory of non-compact

Lie algebras. Their non-trivial unitary irreducible representations (UIR) are necessarily

infinite-dimensional, with energy bounded from either below or above, corresponding, in

the first-quantized language, to the presence of particles and anti-particles. In this paper,

we shall examine this feature in the ŝo(2,D− 1) Wess-Zumino-Witten (WZW) model with

subcritical level k = −(D − 3)/2, with particular focus on the case of D = 4.

Non-compact WZW models furnish a novel mathematical topic that remains relatively

uncharted in comparison with the compact case, essentially due to the above-mentioned
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fact that infinite-dimensional UIRs arise already at the level of the finite-dimensional sub-

algebra. Previous investigations related to QFT in anti-de Sitter (AdS) spacetime have

considered cases with non-critical level k + h∨ < 0 [1 – 4], critical level k + h∨ = 0 [5, 6]

as well as subcritical levels k + h∨ > 0 [7], where h∨ is the dual Coxeter number given by

h∨ = D − 1 for so(2,D − 1).

The attempts of interpreting the critical case as a form of tensionless limit have been

problematic, technically, at the level of two-dimensional conformal field theory (CFT),

where the standard Sugawara construction breaks down. In this respect, the subcritical

cases are more tractable. Interestingly, already in [7] it was found that in D = 4 the

subcritical k′ = −5/2 Verma module built on the scalar singleton exhibits a large number of

singular vectors, signalling some form of symmetry enhancement (one might also speculate

about some form of duality between subcritical models with levels k and k′ obeying k+k′ =

D − 1). More recently, starting with the work in [8], attempts to formulate string theory

duals of N = 4 Super-Yang-Mills theory have led to CFTs [9 – 11] that are tantalizingly

close to our subcritical cases, although the precise relation remains to be seen. ŝo(2,D−1)

WZW models in four dimensions have also been considered in the literature and, for the

choice D = 5, it has been proven that a dynamical sector that is Einstein’s general relativity

arises [12].

Our physical interest in the subcritical models with k = −(D − 3)/2 (in the case of

purely bosonic models) stems from the fact that they exhibit compositeness, whereby phys-

ical particles, such as photons and gravitons, instead of being fundamental, are made up

from more elementary constituents, known as singletons. Drawing on the group theoreti-

cal underpinning of the AdS/CFT correspondence and the features of Vasiliev’s unfolded

approach to Higher-Spin Gauge Theory (HSGT) and QFT in general (for a recent re-

view, see [13] and references therein; for a recent development in the direction of M-theory

see [14]), one arrives at the idea that the singletons are the basic constituents of String

Field Theory (SFT) and that this feature is manifest when SFT is expanded around tension-

less AdS backgrounds — while being blurred in expansions around tensionful backgrounds

including flat spacetime.

A key step in entertaining this partonic picture is to find a connection between the

standard background-dependent quantization of strings and a covariant formulation that

combines phase-space quantization of discretized tensionless strings with unfolded dynam-

ics. Roughly speaking, the worldsheet correlators — which are normally expanded around

metric backgrounds with finite string tension in terms of cut-off field-theoretic Feynman

diagrams – should be given an expansion around a topological vacuum with zero tension,

resulting in algebraic structures making up the internal sector of unfolded SFT. In the

unfolded approach, the total manifold is a non-commutative fiber (the string phase space)

times a commutative base manifold (containing the actual physical spacetime), and the

unfolded field equation is the (non-linear) cohomology of the phase-space BRST operator

plus the exterior derivative. As it is the case already in HSGT, the projection to the base

then yields a Free Differential Algebra (FDA) constituting a quasi-topological QFT with in-

finitely many zero-forms. Here, spacetime, instead of being a slice of the non-commutative

phase space, reemerges, fully covariantly, upon fixing the manifest homotopy invariance of
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the FDA.

Put somewhat differently, we have in mind a worldsheet duality between, on the one

hand, the standard BRST formulation based on the Virasoro algebra and sewing of surfaces,

and, on the other hand, a non-standard BRST formulation (yet to be spelled out in detail)

based on gauging subcritical affine algebras and sewing of string partons. As we shall

see in this paper, and which is of great conceptual interest, the subcritical affine algebras

incorporate the key features of the corresponding, already known, higher-spin enveloping

algebras, thus, seemingly, superseding the latter as the key algebraic structure underlying

unfolded SFT.

In a previous paper, [15], two of the authors of the present paper have examined

ordinary bosonic branes in AdSD using four related models: i) the normal-coordinate

expansion around Nambu-Goto solitons describing rotating branes; ii) conformal branes

close to the boundary of the AdS spacetime; iii) discretized tensionless branes on Dirac’s

hypercone; and iv) a topological non-compact gauged subcritical WZW model (closed

singleton strings) in D = 7. It was found that (i)-(iii) realize the brane partons as scalar

singletons. The same was conjectured to hold also in the WZW model (iv), and, as already

announced, this seems indeed to be the case, as we shall demonstrate in this paper (see

section 3). Out of these models, we expect the WZW-model formulation to be the most

viable one, since it entails the incorporation of a “stringy” multi-parton spectrum — with

massless as well as massive representations — into the above-mentioned unfolded approach

to QFT. That is, as outlined above, the WZW model realizes an algebra of functions on

a phase space (given, roughly, by the direct sum over direct products of singleton phase

spaces) to be identified as the fiber of an unfolded formulation of SFT, in which all gauge

symmetries (on the base manifold), including higher-spin symmetries, are unbroken.

The affine realization of the singletons and its composites in the case of ŝo(2,D − 1)

rests on the simple observation that, for the subcritical level1

k = −ε0 ≡ −D − 3

2
, (1.1)

there exists a singular vector at Virasoro level 2 in the NS sector whose decoupling plays

the role of a non-perturbative equation of motion [16] selecting the physical operators. The

singular vector amounts to the affine hyperlight-likeness condition

(MA
C(z)MBC (z)) − trace ∼ 0 , (1.2)

where by MAB(z) we denote the currents. In section 3 we will discuss this condition in

more detail and we will show that the physical operators of the subcritical WZW model

are twisted primary fields: the twist, labeled by an integer P ∈ Z, refers to that the lowest-

weight conditions are shifted upward and downward P Virasoro levels for the KM charges

with positive and negative AdS energy, respectively. As we shall see, the scalar singleton

1There is no coincidence that −k is the energy of the singleton ground state. Interestingly, the subcritical

case considered in [7], namely level k′ = −5/2 in D = 4, is dual to our case in the sense that k + k′ = −h∨.

The precise relation remains to spelled out.
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(P = 1) and anti-singleton (P = −1) and their |P |-fold tensor products arise naturally in

this construction.

The singular vacuum vector induces a large number of singular vectors in the various P -

twisted Verma modules. The model nonetheless contains non-unitary and non-topological

states. Drawing on the continuum limit of discretized branes [15] as well as on the sigma-

model description of null surfaces in anti-de Sitter spacetime [17] (see also [18, 19]), it

makes sense to entertain the idea that the coset model based on

ŝo(2,D − 1)−ε0

ŝo(D − 1)−ε0 ⊕ ŝo(2)−ε0

, (1.3)

is a topological model consisting of symmetrized multipletons. In [15], a specific continuum

limit of a discretized tensionless brane in AdSD was shown, using a phase-space formulation

on the (D + 1)-dimensional ambient space, to be an Sp(2)-gauged free-field model with

critical dimension D = 7. This model was then argued to be dual to the ŝo(6, 2)−2 WZW

model, and the gauging was imposed by hand in order to remove unphysical states. We

shall describe the above gauging and its potential short-comings in more detail in [20].

In this paper we shall instead focus on the ungauged ŝo(2,D−1)−ε0 model. Eventually,

we shall specify to the case of ŝo(2, 3)−1/2 that can be realized in terms of 4 real symplectic

bosons forming a quartet of sp(4). The 2 + 2 split of the bosons allows us to lift several

results from the study of the ŝp(2)−1/2 model in [21], with the important exception of the

hyperlight-likeness condition (1.2), which couples the two doublets in a non-trivial fashion

(the equation of motion of the ŝp(2)−1/2 model is instead a 5-plet at level 4).

The paper is organized as follows: in section 2 we discuss the hyperlight-likeness con-

dition and the special role of the scalar singletons in D dimensions. In section 3 we lift

this condition to the non-compact WZW model and show how it is solved by the twisted

primary fields. In section 4 we present the realization of the 4D model in terms of symplec-

tic bosons and multiple sets of Heisenberg oscillators. In section 5 we compute the fusion

rules using bosonization techniques. Finally, in section 6 we summarize our results.

2. Singletons and multipletons

Singletons are ultra-short unitary representations of so(2,D − 1) that admit no flat space-

time limit. They were first discovered in D = 4 by Dirac in 1963 [22]. His singletons

may be realized [23, 24] as conformal particles on the 4-dimensional (singular) hypercone

in 5-dimensional embedding space R
2,3 with signature (− − + + +). Gauging the world-

line conformal group Sp(2) leaves a 4-dimensional physical phase space parameterized by

two Heisenberg oscillators. The 10 oscillator bilinears generate a unitary representation of

Sp(4) ' Spin(2, 3) in the Fock space, which decomposes into a scalar and a spinor repre-

sentation consisting of the even and odd states, respectively. Dirac seemed intrigued by the

fact that his representations do not survive the flat limit. This feature was later stressed by

Flato and Frønsdal, who argued that, instead of limiting the formulation of Quantum Field

Theory to flat spacetime, it might make more sense to start with a non-zero cosmological

constant and recover the flat case in a limit. Dirac’s representations could then play a role
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as hidden, or internal, quantum variables. Indeed, a key property of AdS Quantum Field

Theory, discovered by Flato and Frønsdal in [25], is that massless and massive one-particle

states are composites consisting of two or more singletons (they introduced the term sin-

gleton referring to the fact that it occupies a single line in the non-compact weight space).

In other words, the massless fermions and scalars, and even more interestingly, the photons

and gravitons, which one would consider as fundamental in flat spacetime, are some form

of two-singleton composites in AdS spacetime. One recognizes a similar reasoning behind

Thorn’s string bits and the more recent AdS/CFT correspondence. Flato and Frønsdal

viewed, however, the singletons as “gauge” singlets as opposed to the “colored” string bits

and fundamental fields of the holographic CFT’s. One natural scenario in which singlet

singletons may arise is in the partonic description of extended objects in AdSD advocated

in [15]. The main feature of this proposal is to combine the discretization with a (D + 1)-

dimensional phase-space formulation, without gauge fixing on the worldvolume, and then

argue for enhanced sigma-model gauge symmetries in a combined tensionless and hyper-

cone limit. The resulting gauge group contains one Sp(2) subgroup for each parton, that

hence can be identified as a singleton realized as a (D + 1)-dimensional conformal particle.

2.1 Elements of so(2,D − 1) representation theory

To give a group-theoretical presentation of singletons and their tensor products (see for

example [26 – 30]) one starts from the hermitian so(2,D − 1) generators MAB (A,B =

0′, 0, 1, . . . ,D − 1) obeying2

[MAB ,MCD] = 4iηBCMAD , MAB = −MBA = (MAB)† , (2.1)

where ηAB = diag(−,−,+, . . . ,+). In terms of the AdS energy E and translation-boost

generators L±
r (r = 1, . . . ,D − 1), defined by

E = M00′ = E† , L±
r = Mr0′ ∓ iMr0 = (L∓

r )† , (2.2)

and the spatial angular momenta Mrs = −Msr = (Mrs)
†, the commutation rules assume

the following form

[L−
r , L+

s ] = 2δrsE + 2iMrs , [E,L±
r ] = ±L±

r , [Mrs, L
±
t ] = 2iδstL

±
r . (2.3)

For D ≥ 4 the physical representations are of lowest-weight type.3 To describe these

representations one starts from the Harish-Chandra module4 V(e0,m0) (see e.g. [28]) gen-

erated by the repeated action of the energy-raising operators L+
r on a lowest-weight state

|e0,m0; `〉 obeying

L−
r |e0,m0; `〉 = 0 , (E − e0)|e0,m0; `〉 = 0 , (2.4)

2We suppress Young projections of indices, which are always of unit strength, unless two sides of an

equation have different index symmetries.
3The cases D = 2 and D = 3 require a separate analysis.
4Harish-Chandra modules are generalized Verma modules where by definition all null states generated

by energy-lowering operators and spatial angular momenta are factored out.
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and with ` denoting the weights of the UIR of so(D − 1) labeled by the highest weight

m0 = (m1
0,m

2
0, . . . ,m

ν
0), m1

0 ≥ m2
0 ≥ · · · ≥ |mν

0 |, where ν = [(D − 1)/2] and mν
0 ≥ 0 if D

is even integer. The spectrum of the energy operator E acting in V(e0,m0) is bounded

from below by the energy eigenvalue e0 of the lowest-weight state, which one sometimes

refers to as the ground state. The anti-linear inner product on the space of ground states

yields an anti-linear inner product on V(e0,m0) in its turn inducing a maximal invariant

subspace N(e0,m0) ⊂ V(e0,m0). This maximal ideal consists of null states, i.e. states

that are orthogonal to all states in V(e0,m0). It is nontrivial iff there exists at least one

singular vector, namely a state |e′0,m′
0〉 ∈ V(e0,m0) with e′0 > e0 obeying L−

r |e′0,m′
0〉 = 0.

The singular vector generates its own submodule of N(e0,m0). There may be several null

submodules, possibly with additional substructure. Factoring out N(e0,m0) yields the

non-degenerate lowest-weight space

D(e0,m0) = V(e0,m0)/N(e0,m0) . (2.5)

Every lowest-weight space can be flipped “upside down” into a highest-weight space,

D−(e0,m0) = V−(e0,m0)/N
−(e0,m0) , (2.6)

built on the highest-weight state

L+
r |e0,m0; `〉− = 0 , (E + e0)|e0,m0; `〉− = 0 . (2.7)

We shall use the convention that superscript + and − indicate lowest and highest-weight

spaces and states, with + set as default value, and refer to the negative-energy states as

anti-states. Defining the linear map

π
(
|e0,m0〉±

)
= |e0,m0〉∓ , π

(
±〈e0,m0|

)
= ∓〈e0,m0| , (2.8)

one can show that π lifts to a linear involutive so(2,D − 1) automorphism given by

π(Mab) = Mab , π(Pa) = −Pa . (2.9)

where MAB = (Mab, Pa), with Pa = Ma0′ , a = (0, r) being the space-time translations and

Mab the Lorentz transformations. It is also useful to introduce an anti-automorphism τ

acting on states and generators as follows

τ
(
|e0,m0〉±

)
= ∓〈e0,m0| , τ(MAB) = −MAB . (2.10)

With these definitions, it follows that πτ = τπ.

2.2 Masslessness and hyperlightlikeness

From the commutation rules (2.3) it follows that there are no singular vectors if e0 is large

enough at fixed m0, in which case D(e0,m0) = V(e0,m0) is unitary and is referred to as

a massive representation. Lowering e0 while keeping m0 fixed, singular vectors appear for

the first time at a critical value of e0 [31]. In case m1
0 ≥ 1, the singular vector corresponds
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to a field-theoretic gauge artifact [32], and one may refer to the critical D(e0,m0) as a

massless representation. The simplest case is m0 = (m1
0) ≡ (m) with m ≥ 1, i.e. a ground

state that is a symmetric rank m tensor. The corresponding unitary lowest-weight space is

D(m + 2ε0, (m)) , ε0 =
D − 3

2
, (2.11)

and the gauge modes are generated from the longitudinal singular vector

|m + 2e0 + 1, (m − 1)〉r(m−1) =

D−1∑

t=1

L+
t |m + 2ε0, (m)〉tr(m−1) , (2.12)

where we use the notation r(m) ≡ r1 · · · rm.

Interestingly, also scalar and spinor Harish-Chandra modules, i.e. the cases m = 0, 1/2,

exhibit critical behavior giving rise to the scalar and spinor singletons

D0 ≡ D(ε0, (0)) , D1/2 ≡ D(ε0 + 1/2, (1/2)) . (2.13)

The singular vectors are now given by

L+
r L+

r |ε0, (0)〉 , (γr)α
βL+

r |ε0 + 1/2, (1/2)〉β , (2.14)

where (γr)α
β are Dirac matrices (squaring the Dirac operator one finds that L+

r L+
r ' 0 also

for the spinor). The singletons therefore consist of single discrete lines {n+ε0, (n)+m0}∞n=0

in the non-compact weight space. In the Harish-Chandra module, the singular vectors are

compact, or Bogoliubov-transformed, versions of the (D − 1)-dimensional equations of

motion of conformal scalar and spinor fields [33]. There are also unitary singleton-like

representations with m ≥ 1, corresponding to discrete subcritical values of e0, but we shall

not be interested in them here.

Alternatively, the quantum-mechanical equation of motion of the singleton can be writ-

ten directly in terms of the angular momenta MAB on a manifestly (D + 1)-dimensionally

covariant form as the following hyperlight-likeness condition,5

〈Ψ|VAB |Ψ′〉 = 0 , (2.15)

where VAB is the traceless operator

VAB =
1

2
M(A

CMB)C − ηAB

D + 1
C2 , C2 =

1

2
MABMAB . (2.16)

In a lowest or highest-weight space, this is equivalent to that the ground state |Ω〉 obeys

Vrs|Ω±〉 = 0 . (2.17)

5Realizing the angular momenta as MAB = XAPB − XBPA where XA and P B are the coordinates

and momenta of the conformal particle in R
2,D−1, one can show that VAB is proportional to the Sp(2)

generators X2, P 2 and {XA, PA}, so that VAB ' 0 comprises the light-likeness condition P 2 ' 0 as well

as the hyper-cone condition condition X2 ' 0. The hyperlight-likeness condition forces the D-dimensional

space-time energy-momentum into rotational motion rather than ordinary geodesic, e.g. light-like, motion.
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In the case of scalar and spinor lowest-weight spaces in D ≥ 4, one can show that the

hyperlight-likeness condition holds only for scalar singletons in D ≥ 4 and the spinor

singleton in D = 4, i.e.6

D±
0 : hyperlight-like for all D , (2.18)

D±
1/2 : hyperlight-like iff D = 3, 4 . (2.19)

We note that in the singleton Harish-Chandra module VAB|χ〉 are null states for arbitrary

|χ〉. In particular, the (D − 1)-dimensional mass-shell condition is recovered from V ++ =
1
2L+

r L+
r , where X± = X0′ ∓ iX0. Moreover, acting on |ε0 + n, (m)〉 ∈ V(ε0, (0)) with

m = n − 2k, k = 1, 2, . . . (i.e. containing k factors of L+
r L+

r ) with V +
r and decomposing

into symmetric traceless and trace parts, yields

V +
{r |ε0 + n, (m)〉r(m)} = ikL+

{r|ε0 + n, (m)〉r(m)} , (2.20)

V +
s |ε0 + n, (m)〉sr(m−1) =

i

2
L+

r |ε0 + n, (m)〉rs(m−1) , (2.21)

where {r(m)} denotes the traceless part of r(m). Each of these equations separately implies

that all states in the Harish-Chandra module with k > 0 are null states.

2.3 Compositeness and higher-spin algebra

The fundamental nature of the singletons was first exhibited in D = 4 by Flato and Frønsdal

in [25], where they derived the following decomposition under so(2, 3) of the tensor product

of two scalar singletons,

D0 ⊗ D0 =
⊕

m=0,1,2,...

D(m + 1,m) , (2.22)

D0 ⊗ D1/2 =
⊕

2m=1,3,...

D(m + 1,m) , (2.23)

D1/2 ⊗ D1/2 = D(2, 0) ⊕
⊕

m=1,2,...

D(m + 1,m) , (2.24)

where we note that all representations on the right-hand sides are massless. Their result

generalizes straightforwardly to two-singleton composites D dimensions [34 – 38, 15]

D0 ⊗ D0 =
⊕

m=0,1,2,...

D(m + 2ε0, (m)) . (2.25)

For this reason, one refers to the symmetric traceless rank m ≥ 0 tensors in D dimensions

and the pseudo-scalar D(2, 0) in D = 4 as composite massless.7 The two-singleton compos-

6One can also show that the scalar and spinor singletons in D = 3 are hyperlight-like.
7In D = 4 the composite massless representations admit extensions to the conformal group whose

restrictions to the Poincaré group are ordinary massless particles with helicity ±m. These can be compared

with the conformally coupled scalar in D dimensions, that has e0 = (D − 1 ± 1)/2, which can equal the

composite value e0 = D − 3 only in D = 4 and D = 6, and that of the composite pseudo-scalar value

e0 = D − 2 only in D = 2 and D = 4.
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ites can be decomposed under S2 into symmetric and anti-symmetric Young projections8

[D0 ⊗ D0]S =
⊕

m=0,2,4,...

D(m + 2ε0, (m)) , (2.26)

[D0 ⊗ D0]AS =
⊕

m=1,3,5,...

D(m + 2ε0, (m)) . (2.27)

Adhering to the nomenclature introduced in [41], we shall refer to Young-projected multi-

singleton composites as multipletons, and in particular to the massless cases as symmetric

and anti-symmetric doubletons.9 In general, the tensor product of P ≥ 2 singletons decom-

poses under SP into P ! P -tupletons. For P > 2 these decompose under so(2,D − 1) into

massive representations, although as far as we know the explicit form of this decomposition

has not been given in the literature.

The scalar singleton D±
0 is the fundamental representation of the minimal bosonic

higher-spin algebra ho0(2,D−1). This algebra is an infinite-dimensional Lie-algebra exten-

sion of so(2,D−1), defined by factoring out the annihilator of D±
0 from the Env(so(2,D−

1)) [38, 43, 15].10 The algebra ho0(2,D − 1) acts transitively on D±
0 (and D±

1/2 in D = 4)

and irreducibly on the multipletons. The irreducibility of the multipletons, i.e. the absence

of non-trivial ho0(2,D − 1)-invariant tensors in (D±
0 )⊗P , is a consequence of the fact that

ho0(2,D− 1) contains su(k) subalgebras for unbounded values of k. These subalgebras are

obtained by consistently truncating to generators that have non-vanishing matrix elements

only between singleton states with excitation energies ε0 + n for n = 0, 1, . . . , N (k can

be made arbitrarily large by taking N sufficiently large). As an aside, for later reference,

we note that both (ho0(2,D − 1),D+
0 ) and (ho0(2,D − 1),D−

0 ) are formal N → ∞ lim-

its of (su(N), N). Thus, apart from the standard ho0(2,D − 1)-invariant inner product

〈·|·〉 : D±
0 ⊗ D±

0 → C, there also exists an ho0(2,D − 1)-invariant bilinear inner product

(·, ·) : D±
0 ⊗ D∓

0 → C defined by

(
λ|Ψ〉, λ′|Ψ′〉

)
= λλ′

(
|Ψ〉, |Ψ′〉

)
, (2.28)

(
|Ψ〉,MAB |Ψ′〉

)
=

(
−MAB |Ψ〉, |Ψ′〉

)
, (2.29)

(
|ε0, (0)〉−, |ε0, (0)〉+

)
=

(
|ε0, (0)〉+, |ε0, (0)〉−

)
= 1 . (2.30)

The higher-spin algebra, by its construction, contains an infinite-dimensional Cartan

subalgebra, so that its representation theory falls outside that of Lie algebras with finite-

dimensional Cartan matrices. On the other hand, from a physical point-of-view, the higher-

spin algebra appears to be too small to unify interactions that mix multipletons with

different values of P (with the exception of (classically consistent truncations to) self-

interactions in the massless P = 2 sector). As found in [15], multipletons arise in a

8It is intriguing that [D0 ⊗ D0]S agrees with [D1/2 ⊗ D1/2]AS except in the scalar sector, where the

former contains the parity-invariant scalar D(1, 0) and the latter the pseudo-scalar D(2, 0). This points via

holography to some form of bose-fermi correspondence in three-dimensional conformal field theory [39, 40].
9The doubletons of so(2, 3), which are massless conformal tensors in four dimensions, are singletons of

so(2, 4) ' su(2, 2). This particular notion of doubletons was first introduced in [42].
10The minimal higher-spin algebra is denoted by ho(1|2; [2, D − 1]) in [38].
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discretized description of tensionless extended objects in anti-de Sitter spacetime. It was

further argued that the continuum limit leads to a non-compact WZW model, wherein the

singletons arise as twist-fields in the R sector,11 the tensoring is lifted to fusion, and the

role of the higher-spin algebra is replaced by an affine extension of so(2,D − 1).

3. On subcritical ŝo(2, D − 1) WZW models

In this section we propose an ŝo(2,D−1) WZW model at the subcritical level −(D−3)/2,

which we claim accommodates the scalar singleton as well as all its composites. Here,

our approach is purely algebraic, based on using spectral flow to solve the current-algebra

version of the hyperlight-likeness condition (2.15). The construction will then be explored

in more detail in the case of D = 4 in the coming sections using symplectic bosons and

free-field realizations. The affine representation spaces contain many unphysical states over

and above the desired singletons and multipletons, which one may think of as generalized

ground states. Whether a unitary model can be extracted by some form of gauging is still

an open issue, and we refer to [20] for more details.

3.1 Affine hyperlightlikeness

In what follows we shall focus on the holomorphic sector of the WZW model. The under-

lying ŝo(2,D − 1)k currents obey the operator product expansion

MAB(z)MCD(w) =
2kηACηBC

(z − w)2
+

4iηBCMAD(w)

z − w
+ finite , (3.1)

where the level k is chosen such that the normal-ordered field12

VAB(z) =
1

2

(
M(A

CMB)C

)
(z) − trace , (3.2)

is a singular vector in the NS sector. In other words, k is fixed such that VAB(z) is a

Kac-Moody primary obeying

MAB(z)VCD(w) =
4iηBCVAD(z)

z − w
+ finite . (3.3)

Since VAB is an so(2,D−1) tensor with highest weight (2) and canonical conformal weight

2, the Sugawara construction implies that VAB can be a KM primary iff

h[VAB ] ≡ C2[so(2,D − 1)|(2)]
2(k + h∨)

=
2(2 + D − 1)

2(k + D − 1)
= 2 , (3.4)

from which we read off the subcritical level

k = −ε0 . (3.5)

11In [15] we used the term spin-field, but here we shall instead use the more commonly used term twist-

field.
12The normal ordering operation is defined by (AB)(z) =

H

z
dx
2πi

A(x)B(z)
x−z

(for example, see [44]).

– 10 –



J
H
E
P
0
2
(
2
0
0
7
)
0
9
7

Indeed, for this value the double contractions in MAB(z)VCD(w) cancel, and one is left

with (3.3). The Sugawara stress tensor becomes

T (z) =
1

2(D + 1)
(MABMAB)(z) (3.6)

with central charge c = −D(D − 3)/2. The hermitian conjugation is given by X† =

((X)∗)τ where ∗ is an anti-linear automorphism ∗ and τ a linear anti-automorphism (BPZ

conjugation), defined by

(MAB(z))∗ = −MAB(z) , (MAB(z))τ = − 1

z2
MAB

(
z−1

)
, (3.7)

resulting in

(MAB,n)∗ = −MAB,n , (MAB,n)τ = −MAB,−n , (MAB,n)† = MAB,−n . (3.8)

Acting on the 0-modes, the BPZ conjugation reduces to the anti-automorphism τ defined

in (2.10). The lift of the so(2,D − 1) automorphism π given in (2.9) to the affine case is

given by

π(Mab,n) = Mab,n , π(Pa,n) = −Pa,n . (3.9)

Turning to the primary fields of the WZW model, the decoupling of the singular

vacuum vector at the level of three-point functions forces the primaries to obey an equation

of motion [16, 21], which is a necessary condition that fixes the admissible representations

but not their multiplicities (a complete determination of the spectrum requires further

input from demanding closure of the operator product expansion, crossing symmetry and

modular invariance). Denoting the primary fields and states by VΛ(z) and |Λ〉 = VΛ(0)|0〉,
and the corresponding KM Verma modules by V̂(Λ), the decoupling amounts to

〈Ψ|VAB,n|Ψ′〉 = 0 for all n ∈ Z and |Ψ〉, |Ψ′〉 ∈ V̂(Λ) , (3.10)

where the inner products are defined using the hermitian conjugation (3.8). The decoupling

(3.10) is equivalent to 〈Λ|VAB,n|Λ〉 = 0 for all n. Assuming that 〈Λ| has a fixed L0

eigenvalue, this is the same as 〈Λ|VAB,0|Λ〉 = 0. Finally, assuming that 〈Λ| is a so(2,D−1)

ground state, one finds

Vrs,0|Λ〉 = 0 , (3.11)

which is the affine version of (2.17).

In general, the primary field may be twisted in the sense that MAB,n|Λ〉 vanishes for

some AB and n < 0 and does not vanish for some AB and n > 0. In our case, the relevant

twisting is described using the compact basis, viz.

[L−
r,m, L+

s,n] = 2iMrs,m+n + 2δrsEm+n + 2ε0mδrsδm+n,0 , (3.12)

[Em, En] = −ε0mδm+n,0 , (3.13)

[Mrs,m,Mtu,n] = 4iδstMru,m+n − 2ε0mδrtδsuδm+n,0 . (3.14)
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Given an integer P , a P -twisted primary field13 V[P ];Λ(z) is by definition taken to obey

L±
r,n|[P ]; Λ〉 = 0 for n ≥ ±P + 1 , (3.15)

Mrs,n|[P ]; Λ〉 = En|[P ]; Λ〉 = 0 for n ≥ 1 , (3.16)

and to be a ground state with lowest weight labels (e
[P ]
0 ,m

[P ]
0 ) of a Harish-Chandra module

of the so(2,D − 1) algebra with generators

L[P ]±
r = L±

r,±P , M [P ]
rs = Mrs,0 , E[P ] = E0 − Pε0 . (3.17)

We note that from (E[P ] − e
[P ]
0 )|[P ],Λ〉 = 0 it follows that

e0 = e
[P ]
0 + Pε0 , m0 = m

[P ]
0 . (3.18)

We shall label the P -twisted ground states by

Λ = (h; e0,m0) , (3.19)

where h is the conformal weight. The action of the KM creation operators on |[P ];h; e0,m0〉
generates Verma modules V̂[P ];h(e0,m0) containing null submodules N̂[P ];h(e0,m0) gener-

ated by P -twisted singular vectors (containing at least all excitations generated by the

modes of VAB). Factoring out the null states yields the twisted lowest weight spaces

D̂[P ];h(e0;m0) =
V̂[P ];h(e0;m0)

N̂[P ];h(e0;m0)
. (3.20)

We note that the standard definition of a KM weight space is recovered for P = 0. For

P = ±1, one additional singular vector has been factored out from the Verma module,

namely L∓
r,−1|[±1]; Λ〉.

3.2 Twisted primary scalars and multipletons

Let us consider the special case of a P -twisted primary field V[P ](z) that is a singlet under

so(2,D − 1)[P ], i.e.

L±
r,n|[P ]〉 = 0 , n ≥ ±P , (3.21)

(En − δn0Pε0)|[P ]〉 = 0 , Mrs,n|[P ]〉 = 0 , n ≥ 0 . (3.22)

These states are also conformal primaries,

(Ln − h[P ]δn0)|[P ]〉 = 0 , h[P ] = −P 2ε0

2
, (3.23)

where n ≥ 0 and Ln are the Virasoro generators taken from the Sugawara stress tensor

(3.6). Since |[P ]〉 is an SO(D − 1) scalar, it follows that

Vrs,0|[P ]〉 =
1

D − 1
δrsVtt,0|[P ]〉 . (3.24)

13Primary fields of this type are also referred to in the literature (see e.g. [4, 45]) as spectrally flowed

primary fields.
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By explicit calculations one can then go on to show that Vrr,0|[P ]〉 = 0, i.e. the twisted-

primary singlets defined above obey the equations of motion (3.11), i.e.

Vrs,0|[P ]〉 = 0 . (3.25)

The scalar twisted lowest-weight spaces, that we shall denote by

D̂[P ] = D̂
[P ],−

P2ε0
2

(Pε0, (0)) , (3.26)

contain negative norm states, which should be removed carefully by imposing suitable gauge

conditions [7, 20]. In this paper we shall not enter this important discussion. Instead, let

us highlight the interesting, potentially physical, subspace D[P ] ⊂ D̂[P ] given by

D[P ] =
⊕

e0,m0

D[P ];h(e0,m0) , (3.27)

where D[P ];h(e0,m0) are defined to be the (untwisted) so(2,D−1) weight spaces generated

by acting with Lσ
r,0, with σ = sign(P ), on ground states of the form

|[P ];h; e0,m0〉σ =




∏

r,|n|≤|P |−1

Lσ
r,n



 |[P ]〉 + |[P ]; Ψ〉 , (3.28)

where the state |[P ]; Ψ〉 contains at least one excitation by one of the compact subalgebra

generators {E−n,Mrs,−n}|P |−1
n=0 , and is determined by

L−σ
r,0 |[P ];h; e0,m0〉σ = 0 . (3.29)

We note that the weight spaces in D[P ] are of lowest-weight type for P > 0 and highest-

weight type for P < 0, and we shall therefore drop the superscript σ on the states. In

particular,

|[P ]〉 = |[P ];−P 2ε0

2
; 2σε0, (0)〉 (3.30)

are ground states of scalar weight spaces. The state |[0]〉 is the NS vacuum, so that

D[0] = D[0](0, 0) . (3.31)

For P = ±1, we identify |[±1]〉 as the ground states of the scalar singleton, D+ =

D[1];−ε0/2(ε0, (0)), and anti-singleton, D− = D[−1];−ε0/2(−ε0, (0)), and hence

D[±1] ' D±
0 . (3.32)

For P = ±2, we identify |[2]〉 and |[−2]〉 as the ground states of the composite massless

scalar and anti-scalar, respectively. Acting on |[±2]〉 with traceless strings of L+
r,1 generators

yields the composite massless higher-spin ground states (m = 0, 1, 2, 3, . . . )

|[±2];−2ε0 − m;±(m + 2ε0), (m)〉{r(m)} = L±
{r1,1 · · ·L

±
rm},1|[±2]〉 . (3.33)
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We note that the trace parts sit in N̂[±2];−2ε0−m(±(m + 2ε0), (m)). Similarly, traceless

strings of Lσ
r,−1 generators dressed up with suitable correction terms involving subalgebra

generators provide massless ground states of the form |[±2];−2ε0 + m;m + 2ε0, (m)〉. For

example, the photon ground state with conformal weight −2ε0 + 1 is given by

|[2];−2ε0 + 1; 1 + 2ε0, (1)〉r =

(
L+
−1,r +

i

1 + 2ε0
Mrs,−1L

+
s,0

)
|[2]〉 . (3.34)

Similar constructions can be given for higher spin and for P = −2. Thus

D[±2] ⊃ D[±2];−2ε0(±2ε0, (0)) ⊕ D′
[±2];+ ⊕ D′

[±2];− , (3.35)

where we have defined

D′
[±2];− =

⊕

m=1,2,...

D[±2];−2ε0−m(±(m + 2ε0), (m)) , (3.36)

D′
[±2];+ =

⊕

m=1,2,...

D[±2];−2ε0+m(±(m + 2ε0), (m)) . (3.37)

From (2.25) it follows that

D[±2];−2ε0(±2ε0, (0)) ⊕ D′
[±2];− ' D±

0 ⊗ D±
0 . (3.38)

We expect the above pattern to generalize, so that

D[P ] ⊃ D[P ];− ' (Dσ
0 )⊗|P | , (3.39)

where D[P ];− is defined to be the space of states in D[P ] with minimal L0-eigenvalue for

fixed so(2,D − 1) quantum numbers.

The above analysis suggests that the scalar twisted primary states |[P ]〉 correspond to

scalar twisted primary fields V[P ] obeying the simple fusion rule V[P ] × V[P ′] = V[P+P ′].

3.3 Spectrum-generating flow and fusion

Spectral flow is an operation which shifts the modes of affine generators such that the

spectrally-flowed algebra is isomorphic to the original one. It is known that spectral flow

in WZW models based on affine Lie algebras with infinite-dimensional zero-mode repre-

sentations connects an infinite set of sectors which are all required for the consistency of

the model, see e.g. [46, 4, 21, 45]. In our case, these sectors are labeled by the integer

P , containing as “zero modes” states in the |P |th tensor product of singletons (P > 0) or

antisingletons (P < 0).

The possible spectra of scalar twisted primaries is restricted by a delicate interplay

between fusion and spectral flow. At the level of the fusion rules, which we denote by ×
and whose entries are affine representation labels Λ, the spectral flow operation, viz.

ΩP [VΛ] = VΩP (Λ) , P ∈ Z , (3.40)

can be composed as follows [46]

ΩP ◦ ΩP ′ = ΩP+P ′ . (3.41)
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By using the commutativity of fusion rules, one can also show that

ΩP [VΛ × VΛ′ ] = ΩP [VΛ] × VΛ′ = VΛ × ΩP [VΛ′ ] . (3.42)

We note that as a consequence ΩP+P ′[VΛ × VΛ′ ] = ΩP [VΛ] × ΩP ′[VΛ′ ]. At the level of the

operator product algebra the distribution of spectral flows induces automorphisms,

ΩP [A(z)B(w)] = (ΩP AΩ−1
P )(z)(ΩP [B])(w) . (3.43)

The spectrally flowed currents are defined by

(ΩP L±
r Ω−1

P )(z) = z±P L±
r (z) ,

(ΩP MrsΩ
−1
P )(z) = Mrs(z) , (3.44)

(ΩP EΩ−1
P )(z) = E(z) − Pε0z

−1 , (3.45)

or in terms of the charges

ΩP L±
r,nΩ−1

P = L±
r,n±P , ΩP Mrs,nΩ−1

P = Mrs,n , (3.46)

ΩP EnΩ−1
P = En − Pε0δn,0 . (3.47)

The shift in the energy is compatible with the central extension in (3.12). The spectral

flow of the Sugawara stress tensor (3.6) is by definition given by

(ΩP TΩ−1
P )(z) =

∮

z

dx

2πi(x − z)
(ΩP MABΩ−1

P )(x)(ΩP MABΩ−1
P )(z) . (3.48)

Expanding the operator product and evaluating the residue at x = z one finds

(ΩP TΩ−1
P )(z) = T (z) + PE(z) − P 2ε0

2
z−2 , (3.49)

or, at the level of Virasoro generators,

ΩP LnΩ−1
P = Ln + PEn − P 2ε0

2
δn,0 , (3.50)

where ΩP LnΩ−1
P indeed obeys the same Virasoro algebra as Ln. The mixing between T (z)

and the AdS-energy current E(z) can also be expressed as

E(z) = (ΩP EΩ−1
P )(z) + Pε0z

−1 , (3.51)

T (z) = (ΩP TΩ−1
P )(z) − P (ΩP EΩ−1

P )(z)z−1 − P 2ε0

2
z−2 . (3.52)

A family of so(2,D − 1)[P ]-singlet P -twisted primary fields, obeying (3.21) and (3.22),

can now be constructed by applying spectral flow to the identity,

V[P ] = ΩP [I] , P ∈ Z . (3.53)
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By construction these fields obey the hyperlight-likeness condition (3.11), which one can

also verify directly by calculating

ΩP Vrs,0Ω
−1
P = Vrs,0 , (3.54)

which implies Vrs,0|[P ]〉 = ΩP [Vrs,0|0〉] = ΩP [0] = 0. We note that ΩP EnΩ−1
P |[P ]〉 =

ΩP LnΩ−1
P |[P ]〉 = 0 for n ≥ 0 is consistent with (3.47) and (3.50), and that the operators

on the left and right-hand sides of (3.51) and (3.52) are normal-ordered with respect to the

0-twisted and P -twisted ground states, respectively. The various conjugates of the twisted

primary states are given by

|[P ]〉∗ = |[−P ]〉 , |[P ]〉τ = 〈[P ]| , π(|[P ]〉 = |[−P ]〉 , (3.55)

implying the hermitian conjugates

|[P ]〉† ≡ (|[P ]〉∗)τ = 〈[−P ]| . (3.56)

We can thus define an inner product by declaring

〈[P ′]|[P ]〉 = δP+P ′,0 , P, P ′ ∈ Z . (3.57)

By definition 〈[P ]|MAB,n = ((MAB,n)†|[−P ]〉)†, which implies that the above definition is

consistent with the assignment of E0 eigenvalues. We note that there also exists a bilinear

inner product (·, ·), induced by the two-point functions, viz.

〈0|OΨ(z)OΨ′(w)|0〉 =
(|Ψ〉, |Ψ′〉)

(z − w)2h(Ψ)
, (3.58)

where OΨ(z) denotes the vertex operator corresponding to the state |Ψ〉. This bilinear

inner product reduces to (2.30) upon restricting to the set of [±]-states generated by the

0-modes.

The composition rule (3.41) and distribution rule (3.42) imply the simple fusion rule14

V[P ] × V[P ′] = V[P+P ′] . (3.59)

The analysis so far suggests an ŝo(2,D − 1)−ε0 model with spectrum given by

D̂ =
⊕

P∈Z

D̂
[P ];−

P2ε0
4

(Pε0, (0)) . (3.60)

Clearly, the closure of the fusion rules is only a necessary criterion, and we leave a more

detailed study of this model, e.g. the properties under modular transformations and locality

of the operator product expansion, to future work. In fact, already in the case of D = 4,

we observe that the above assertion does not take into account the hyperlight-likeness

of the spinor singleton, cf. (2.19). As we shall show next, the affine extension of this

representation can be added and spectrally flowed leading to an extended 4D model with

additional tensor-spinors.

14In the case of WZW models based on affine algebras with infinite-dimensional zero-mode represen-

tations, one has to pay extra attention to the fusion rules. For instance, the Verlinde formula does not

necessarily apply, cf. [21] and references therein.
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3.4 Twisted primary spinors in D = 4

The case of D = 4 is special in two respects. First, there is a massless pseudo-scalar in

D[±2], which has no analog for D > 4. It is given by

|[±2];−1;±2, 0〉 = εrstMrs,−1L
±
t,1|[±2]〉 . (3.61)

Thus, in D = 4

D[±2] ⊃ D[±2];−1(±1, 0) ⊕ D[±2];−1(±2, 0) ⊕ D′
[±2];+ ⊕ D′

[±2];− (3.62)

' (D±
0 )⊗2 ⊕ (D±

1
2

)⊗2 , (3.63)

where we have used (2.22) and (2.24). We note that the massless pseudo-scalar is an

ŝp(4)−1/2 descendant of the massless scalar, while these spaces belong to distinct irreps of

the higher-spin algebra hs(4), see e.g. [47, 40].

Second, the spinor singleton is hyperlight-like, as we saw in the previous section. The

affine extension of the spinor singleton belongs to a 1-twisted sector that is related by

spectral flow to the fundamental spinor of so(2, 3), i.e. the real quartet of sp(4) which has

lowest energy −1/2 and highest energy 1/2. More generally, the spectral flow gives rise to

spinorial P -twisted sectors. To describe these, we decompose the quartet SO(2) × SO(3)

into two SO(3) doublets with energy ±1/2, that we shall denote by

|[0];±〉i = |[0]; 1
2 ;−1

2 , 1
2 ;±〉i , (3.64)

where the quantum numbers indicate that

L±
r,n|[0];±〉i = 0 , n ≥ 0 , (3.65)

L∓
r,n|[0];±〉i = ±δn0(σr)i

j |[0];±〉j , n ≥ 0 , (3.66)
(
En ∓ 1

2δn0

)
|[0];±〉i = 0 , n ≥ 0 , (3.67)

(
Mrs,n|[0];±〉i + i

2δn0(σrs)i
j|[0];±〉j

)
= 0 , n ≥ 0 . (3.68)

The spectral flow operation yields the states

|[P ];±〉i = |[P ]; 3−(|P |+1)2

4 ; P+σ
2 , 1

2 ;±〉i = ΩP (|[0];±〉i) , (3.69)

obeying

L±
r,n|[P ];±〉i = 0 , n ≥ ±P , (3.70)

L∓
r,n|[0];±〉i = ±δn±P,0(σr)i

j |[0];±〉j , n ≥ ∓P , (3.71)
(
En ∓ 1

2δn0(|P | + 1)
)
|[P ];±〉i = 0 , n ≥ 0 , (3.72)

(
Mrs,n|[0];±〉i + i

2δn0(σrs)i
j
)
|[0];±〉j = 0 , n ≥ 0 , (3.73)

(
Ln − δn0h

[P ];−
1
2 ,

1
2

)
|[P ];±〉i = 0 , h

[P ];−
1
2 ,

1
2

= 3−(|P |+1)2

4 . (3.74)

– 17 –



J
H
E
P
0
2
(
2
0
0
7
)
0
9
7

Figure 1: The conformal dimensions h[P ] as a function of the spin m1 = m of the ground states

of the so(2, 3) ' sp(4) subspaces D[P ];h(e0,m0) defined in (3.27). Note that there are two scalar

ground states having h = −1 in each of the P = ±2 sectors, one of which corresponds to the twisted

primary state |[±2];−1;±1, 0〉 and the other to the pseudoscalar |[±2];−1;±2, 0〉.

The above analysis suggests that if one adds the above spinorial sector to the model

in D = 4 (with multiplicities equal to 1), then the spinorial contributions to D[±2] make

this space isomorphic to (D±
0 ⊕ D±

1/2)
⊗2. The natural generalization would then lead to a

4D extended model: D[P ] ' (Dσ
0 ⊕ Dσ

1
2

)⊗|P | . (3.75)

In figure 1 we summarize the set of ground states specifying the representations

D[P ];h(e0,m0) in the D = 4 model for |P | ≤ 2.

Let us continue with a more detailed analysis in D = 4 using a realization in terms of

symplectic bosons.

4. The extended ŝp(4) model

In this section we give the realization of the four-dimensional extended model, which has

symmetry group ŝo(2, 3)−1/2 ' ŝp(4)−1/2, in terms of 4 real symplectic bosons forming a

Majorana spinor [48, 49],15 i.e. a quartet of sp(4). Indeed, the Sugawara central charge

c = −2 and conformal weights h = −1/2 and h = −1/4, respectively, of the fundamental

15Also the models in D = 5 and D = 7 can be realized in terms of symplectic bosons in spinor represen-

tations, but these models require additional internal gaugings (U(1) in D = 5 and SU(2) in D = 7) that

are critical for scalar singletons but not for spinor (nor higher-spin) singletons ground states. This provides

an explanation why spinor singletons are hyperlight-like in D = 4 but not D > 4.

– 18 –



J
H
E
P
0
2
(
2
0
0
7
)
0
9
7

spinor and the twist field agree with the canonical values of the system of symplectic bosons

(where the R sector corresponds to the twist field). To some extent, this correspondence is

analogous to that between the ŝo(4)1 model and 4 real fermions. The important difference

is that in the fermionic model all conformal weights are bounded from below, so that

spectral flow becomes a Z2-operation, corresponding to moving between weights in the

two congruence classes of SO(4), or equivalently, between even and odd momenta in the

two-dimensional Euclidean lattice of the free-field realization. In the case of symplectic

bosons, the conformal weights are bounded from below by −P 2/4 for fixed amount of

twist, P . The spectral flow operation now becomes a Z-operation, corresponding to moving

between classes of momenta in the four-dimensional lattice of signature (2, 2) of the free-

field realization, which will be considered in more detail in the next section.

4.1 Realization using symplectic bosons

In order to make contact with the standard oscillator realization of the singletons, it is

convenient to work in a U(2)-covariant compact basis where the symplectic bosons are

assembled into two doublets ai(z) and āi(z) (i = 1, 2), obeying16

ai(z)āj(w) ∼ δj
i

z − w
. (4.1)

In this basis, the ŝp(4) currents are given by

J̄ ij = āiāj , Ki
j = (āiaj) , Jij = aiaj , (4.2)

and obey

Jij(z)J̄kl(w) ∼
4δ

(l
(jK

k)
i)(w)

z − w
− 4k

(z − w)2
δk
(iδ

l
j) , (4.3)

Ki
j(z)J̄kl(w) ∼

δk
j J̄ il(w)

z − w
+

δl
j J̄

ik(w)

z − w
, (4.4)

Ki
j(z)Jkl(w) ∼ −δi

kJjl(w)

z − w
− δi

lJjk(w)

z − w
, (4.5)

Ki
j(z)Kk

l(w) ∼
δk
j Ki

l(w) − δi
lK

k
j(w)

z − w
+

2k

(z − w)2
δi
lδ

k
j , (4.6)

where the normalization is chosen such that k = −1/2. The corresponding commutation

rules read

[Jij,m, J̄kl
n ] = δl

jK
k
i,m+n + 3 terms − 4kmδk

(iδ
l
j)δm+n,0 , (4.7)

[Ki
j,m, J̄kl

n ] = δk
j J̄ il

m+n + δl
j J̄

ik
m+n , (4.8)

[Ki
j,m, Jkl,n] = −δi

kJjl,m+n − δi
lJjk,m+n , (4.9)

[Ki
j,m,Kk

l,n] = δk
j Ki

l,m+n − δi
lK

k
j,m+n + 2kmδi

lδ
k
j δm+n,0 . (4.10)

16Doublet indices are raised and lowered with εij and εij defined so that εikεjk = δj
i . The symmetric

Pauli matrices (σr)ij = (σr)i
kεkj and (σr)

ij = εik(σr)k
j obey the reality condition ((σr)ij)

∗ = −(σr)
ij .
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The ŝp(4)−1/2 Sugawara stress tensor equals the canonical stress tensor of the symplectic

bosons,

T =
1

2

(
(ai∂āi) − (āi∂ai)

)
(4.11)

with c = −2. The relation between (J̄ ij ,Ki
j , Jij) and the O(3)-covariant compact basis

(L±
r , E,Mrs) is given by

J̄ ij = (σr)ijL+
r , Jij = −(σr)ijL

−
r , (4.12)

Ki
j = δi

jE + i
2(σrs)j

iMrs . (4.13)

The currents Ki
j generate the û(2)−1/2 ' ŝu(2)−1/2 ⊕ û(1)−1/2 ' ŝo(3)−1/2 ⊕ ŝo(2)−1/2

subalgebra. There are also two independent ŝp(2)−1/2 ' ŝo(1, 2)−1 subalgebras generated

by the currents (r′ = +, 3,−)

Jr′(i) = (J+(i), J3(i), J−(i)) = 1
2 (J̄ ii,Ki

i, Jii) , (4.14)

for fixed i = 1, 2. The two sp(2) spins are given in terms of the space-time energy and spin

by

K1
1 = E + M3 , K2

2 = E − M3 , (4.15)

where we use the following canonical basis for SO(3): Mr = −εrstMst/2, [Mr,Ms] =

iεrstMt. To represent the symplectic bosons in Fock spaces, one expands them in modes

ai(z) =
∑

n∈Z+µ

z−n−1/2ai,n , āi(z) =
∑

n∈Z+µ

z−n−1/2āi
n , (4.16)

where by definition µ ∈ {0, 1/2}. The operator product (4.1) is equivalent to the oscillator

algebra

[am,i, ā
j
n] = δj

i δm+n,0 . (4.17)

One next introduces P -twisted oscillator vacua |[P ]〉 obeying

ai,n|[P ]〉 = 0 , for n ≥ −P−1
2 , āi

n|[P ]〉 = 0 , for n ≥ P+1
2 , (4.18)

where P ∈ 2Z + 2µ, giving rise to the P -twisted sectors

F̂[P ] =






∏

n≥
P+1

2

(ai,−n)kn
∏

n≥−
P−1

2

(
āi
−n

)k̄n |[P ]〉





, (4.19)

where kn, k̄n ∈ Z≥0. The P -twisted normal order is defined by

×
×Oai,n×

× =

{
Oai,n for n ≥ −P−1

2

ai,nO else
, (4.20)
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×
×Oāi

n×
× =

{
Oāi

n for n ≥ P+1
2

āi
nO else

, (4.21)

where we note that the odd-twisted normal orderings send ai,0 and āi
0 to the left and the

right, respectively. The P -twisted Green’s functions are given by

ai(z)āj(w) − ×
×ai(z)āj(w)×

× =

(
z
w

)P/2
δj
i

z − w
, (4.22)

and the normal ordering only affects affects the energy operator E = (āiai)/2 and the

stress energy tensor T = (∂āiai − āi∂ai)/2. The 0-twisted normal order coincides with (·),
and one can identify the 0-twisted sector with the standard NS sector, i.e.

|[0]〉 = |0〉 , (4.23)

is the ŝp(4)−1/2 invariant state obeying MAB,n|0〉 = Ln|0〉 = 0 for n ≥ 0. The (±1)-twisted

sectors are analogs of the R-sector in the realization of ŝo(4)1 in terms of 4 real fermions

with cfermion = 2 (here the currents are based on anti-symmetric SO(4)-invariant bilinear

forms; the central extension in ŝo(4)1 is fixed by equating the Sugawara and canonical

stress tensors). In particular, the bosonic Fock space generated by the zero-modes (ai,0, ā
i
0)

are analogs of the finite-dimensional spinor representations of the Clifford algebra with

hspinor = 1/4. Switching back to 4 real bosons reverses the signs in c and h and induces a

non-trivial mixing between the stress tensor and the AdS energy (whose fermionic analog

vanishes identically due to the odd statistics) with the result that

E(z) = 1
2×
×āiai×

× + P
2 z−1 , (4.24)

T (z) = 1
2×
×(∂āiai − āi∂ai)×

× − P
2 ×
×āiai×

×z−1 − P 2

4 z−2 , (4.25)

where P = ±1. In fact, the above expression is valid for any P , in agreement with (3.51)

and (3.52). One way of showing this is to note that for P = P ′ mod 2 one can use simple re-

orderings of oscillators to go between the P -twisted and P ′-twisted normal ordered forms

of operators corresponding to states in the NS sector, i.e. monomials in the symplectic

bosons. The KM charges and Virasoro generators can consequently be expanded in the

P -twisted sector as follows

J̄ ij
n =

∑

m∈Z+µ

×
×āi

māj
n−m×

× ,

Jij,n =
∑

m∈Z+µ

×
×ai,maj,n−m×

× , (4.26)

Ki
j,n =

∑

m∈Z+µ

×
×āi

maj,n−m×
× + P

2 δn,0δ
i
j , (4.27)

Ln =
1

2

∑

m∈Z+µ

×
×

(
m(āi

n−mai,m − āi
mai,n−m) − P āi

mai,n−m

)
×
× − P 2

4 δn,0 . (4.28)
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The star conjugation ∗ and BPZ conjugation τ defined in (3.8) take the following form

in the compact basis

(Jij,n)∗ = −J̄ ij
n , (J̄ ij

n )∗ = −Jij,n , (Ki
j,n)∗ = −Kj

i,n ,

(Jij,n)τ = −Jij,−n , (J̄ ij
n )τ = −J̄ ij

−n , (Ki
j,n)τ = −Ki

j,−n ,

(Jij,n)† = J̄ ij
−n , (J̄ ij

n )† = Jij,−n , (Ki
j,n)† = Kj

i,−n .

(4.29)

The conjugations can be implemented at the level of the oscillator algebra by taking

(ai,n)∗ = iāi
n , (āi

n)∗ = iai,n , (4.30)

(ai,n)τ = −iai,−n , (āi
n)τ = −iāi

−n , (4.31)

(ai,n)† = āi
−n , (āi

n)† = ai,−n . (4.32)

The π map, defined by (3.9), takes the following form in the U(2)-covariant basis,

π(Jij,n) = J̄ij,n , π(J̄ ij
n ) = J ij

n , π(Ki
j,n) = Kj

i = εikK l
kεlj , (4.33)

and can be implemented as

π(ai,n) = āi,n , π(āi
n) = ai

n . (4.34)

Formally, the action of the conjugations and the π map on states can be defined as in (3.55)

and (3.56).

4.2 Generating the spectrum by spectral flow

To describe the P -twisted sectors by means of the spectral flow operation, we define

|[P ]〉 = ΩP [|0〉] . (4.35)

From the fact that ΩP [ai(z)|0〉] and ΩP [āi(z)|0〉] are regular and non-vanishing at z = 0 it

follows that

(ΩP aiΩ
−1
P )(z) = z−P/2ai(z) , (ΩP āiΩ−1

P )(z) = zP/2āi(z) , (4.36)

or, in terms of modes,

ΩP ai,nΩ−1
P = ai,n−P/2 , ΩP āi

nΩ−1
P = āi

n+P/2 . (4.37)

The spectral flows of E(z) and T (z) can then be calculated either by implementing the

normal order using an auxiliary integration and following steps similar to those that led

from (3.48) to (3.49), or by acting directly on the mode expansions in (4.27) and (4.28).

The result can be written as

ΩP E(z)Ω−1
P = E(z) − P

2 z−1 , (4.38)

ΩP T (z)Ω−1
P = T (z) + P

z E(z) − P 2

4 z−2 , (4.39)
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where the left-hand sides above are in P -twisted normal order, which ensures agreement

with (4.24) and (4.25). It is now straightforward to verify that

J̄ ij
n |[P ]〉 = 0 , n ≥ P , (4.40)

Jij,n|[P ]〉 = 0 , n ≥ −P , (4.41)
(
Ki

j,n − P
2 δn,0δ

i
j

)
|[P ]〉 = 0 , n ≥ 0 , (4.42)

(
Ln + P 2

4 δn,0

)
|[P ]〉 = 0 , n ≥ 0 , (4.43)

i.e. |[P ]〉 corresponds to the so(2, 3)[P ]-singlet P -twisted primary defined in (3.21) and

(3.22). In addition to the singlet, there is a twisted primary spinor, given for P 6= 0 by

|[P ];− (|P |+1)2

4 + 3
4 ; (P+σ)

2 , 1
2)〉 =





āi

(P−1)/2|[P ]〉 P > 0

ai
−(P+1)/2|[P ]〉 P < 0

, (4.44)

and for P = 0 by the quartet (denoted here as a lowest weight state)

|[0]; 1
2 ;−1

2 , 1
2 〉 =

{
āi

−
1
2

|0〉 , ai

−
1
2

|0〉
}

. (4.45)

As shown in appendix A, there are no other primary states, so that

F̂[P ] = D̂[0];0(0, 0) ⊕ D̂
[0];

1
2
(−1

2 , 1
2)

⊕

P 6=0

[
D̂

[P ];−
P 2

4

(P
2 , 0) ⊕ D̂

[P ];−
(|P |+1)2

4 +
3
4

( (P+σ)
2 , 1

2 )

]
. (4.46)

4.3 Oscillator realization of the multipleton subsectors

Let us make contact with Dirac’s original oscillator realization of the sp(4) singletons. For

P 6= 0 we split the oscillators (āi
n, ai,n) (n ∈ Z + P/2) into P -twisted non-zero modes with

|n| ≥ (|P |+1)/2 and zero modes with |n| ≤ (|P |− 1)/2. The zero modes can be assembled

into |P | sets of U(2)-covariant oscillators (bi(ξ), b̄
i(ξ)), ξ = 1, . . . , |P |, obeying

[bi(ξ), b̄
j(η)] = δξηδ

j
i , (4.47)

P > 0 : bi(ξ)|[P ]〉 = 0 , (4.48)

P < 0 : b̄i(ξ)|[P ]〉 = 0 . (4.49)

This can be described geometrically in the complex plane as the conformal transformation

z = exp(ζ/P ), which maps the symplectic bosons to

bi(ζ) ≡
(

dz

dζ

)1/2

ai(z(ζ)) =
1√
P

∑

n

e−
nζ
P ai,n , (4.50)

b̄i(ζ) ≡
(

dz

dζ

)1/2

āi(z(ζ)) =
1√
P

∑

n

e−
nζ
P āi

n , (4.51)

– 23 –



J
H
E
P
0
2
(
2
0
0
7
)
0
9
7

followed by a truncation to zero modes, defined by

b
(P )
i (ζ) =

1√
P

∑

|n|≤(|P |−1)/2

e−
nζ
P ai,n , b̄(P )i(ζ) =

1√
P

∑

|n|≤(|P |−1)/2

e−
ζ
P āi

n , (4.52)

after which one identifies

bi(ξ) = b
(P )
i (2πiξ) , b̄i(ξ) = b̄(P )i(2πiξ) . (4.53)

The zero modes yields a subspace of F[P ] ⊂ F̂[P ] given by

F[P ] =






{∏
ξ,i b̄

i(ξ)|[P ]〉
}

for P > 0 ,

{∏
ξ,i bi(ξ)|[P ]〉

}
for P < 0

'
(
F sign(P )

)⊗|P |
, P 6= 0 , (4.54)

where F+ denotes the standard Fock space and F− the anti-Fock space of a U(2)-covariant

oscillator (bi, b̄
i) obeying [bi, b̄

j ] = δj
i . The latter is obtained by acting with bi on an anti-

vacuum |0〉− obeying b̄i|0〉− = 0. The algebra sp(4) is represented in F± by

J̄ (b)ij = b̄ib̄j , K(b)i
j = b̄ibj + 1

2δi
j = bj b̄

i − 1
2δi

j , J
(b)
ij = bibj , (4.55)

leading to the decompositions

F± = D±
0 ⊕ D±

1/2 , (4.56)

where the scalar and spinor singletons and anti-singletons are realized as (m = 0, 1/2)

D+
m =

{
b̄i1 · · · b̄i2(n+m) |[1]〉

}∞

n=0
, D−

m =
{
bi1 · · · bi2(n+m)

|[−1]〉
}∞

n=0
. (4.57)

The ground states |1/2, 0〉± and |1, 1/2〉+i and |1, 1/2〉−i obey

Scalar: K(b)i
j|12 , 0〉± = ±1

2δi
j|12 , 0〉± , (4.58)

J
(b)
ij |12 , 0〉+ = 0 , J̄ (b)ij |12 , 0〉− = 0 , (4.59)

Spinor: K(b)i
j|1, 1

2〉+k = ±
(

1
2δi

j |1, 1
2 〉+k + εjk|1, 1

2〉+i
)

, (4.60)

J
(b)
ij |1, 1

2〉+k = 0 , J̄ (b)ij |1, 1
2 〉−k = 0 . (4.61)

Thus, for P 6= 0 the space F[P ] consists of all possible P -tupletons built from scalar as well

as spinor (anti-)singletons of sp(4) (we note that the permutation group SP , which acts on

ξ, and the Virasoro generator L0 do not commute). For P = 0 we instead define

F[0] = D[0];0(0, 0) ⊕ D
[0];

1
2
(−1

2 , 1
2) , (4.62)

which form a finite-dimensional reducible so(2, 3) representation space.
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Let us examine the cases P = ±1 and P = ±2 in more detail. In F̂[±1] we find

the subspace F[±1] generated by the zero modes (bi(1), b̄
i(1)) = (ai,0, ā

i
0). Here, the KM

charges (J̄ ij
n ,Ki

j,n, Jij,n) vanish for n > 0 and reduce to the oscillator representation (4.55)

for n = 0, leading to an oscillator realization of the sp(4) singletons and anti-singletons of

the form given in (4.57). For P = ±2, the zero modes

bi(1) =
i√
2
(ai,−1/2 − ai,1/2) , b̄i(1) =

i√
2
(āi

−1/2 − āi
1/2) , (4.63)

bi(2) =
1√
2
(ai,−1/2 + ai,1/2) , b̄i(2) =

1√
2
(āi

−1/2 + āi
1/2) , (4.64)

generate the subspaces F[±2] ⊂ F̂[±2], that decompose into massless sp(4) representations

in accordance with (2.24). Diagonalizing L0, one finds that

F[±2] ' (D±
0 ⊕ D±

1/2)
⊗2 , (4.65)

in agreement with (4.54) and (4.56). The ground states are given by

|[2];±m − 1;m + 1,m〉i(2m) = āi1

∓
1
2

· · · āi2m

∓
1
2

|[2]〉 , (4.66)

|[−2];±m − 1;−m − 1,m〉i(2m) = a
i1,∓

1
2
· · · a

i2m,∓
1
2
|[−2]〉 , (4.67)

|[2];−1; 2, 0〉 = εij ā
i
1
2

āj

−
1
2

|[2]〉 , (4.68)

|[−2];−1;−2, 0〉 = εija
i,

1
2
a

j,−
1
2
|[−2]〉 . (4.69)

We note that all ground states are built from oscillators with the same Virasoro mode

numbers except the massless pseudo-scalar ground state, which we can also write as

|[2];−1; 2, 0〉 = εij J̄
ki
1 Kj

k,−1|[2];−1; 1, 0〉 in agreement with (3.61). The KM charges

(J̄ ij
n ,Ki

j,n, Jij,n) with n > 1 vanish in F[±2]. The ground states in F[2];− can be writ-

ten as strings of J̄ ij
1 charges acting on the scalar ground state |[2]〉 and the spinor ground

state āi
−1/2|[2]〉. On the other hand, J̄ ij

−1 yields the massless higher-spin ground states in

F[2];+ together with extra contributions involving oscillator non-zero modes that can be

cancelled by adding terms involving Ki
j,−1 of the form given in (3.34).

So far, the realization of the ŝo(2, 3)−1/2 in terms of symplectic bosons supports the

claim made in (3.75), with the identification

D[P ] = F[P ] . (4.70)

Next, we wish to continue and analyze in more detail the fusion rules and locality properties

of the operator products using a free-field realization.

5. Free-field realization of the extended ŝp(4) model

In this section we use a free-field realization to analyze the fusion rules and locality prop-

erties of the operator algebra of the extended ŝp(4) model introduced in section 4. This

realization also provides a very simple implementation of the spectral flow ΩP .
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5.1 Partial bosonization

To construct the ŝp(4)−1/2 model out of free fields one in principle needs to introduce

four real free bosons, (ϕi, σi), i = 1, 2, in a space with signature (− − ++) and back-

ground charges (0, 0, i/
√

2, i/
√

2). However, when it comes to describing the states of the

Fock spaces introduced in the previous section, it is more practical to work in a partially

bosonized picture analogous to that of the ŝp(2)−1/2 model worked out in [21] (see also [50]).

Here, one retains the two time-like components ϕi (i = 1, 2), defined by

ϕi(z)ϕj(w) ∼ δij ln(z − w) , Tϕ = 1
2(∂ϕi∂ϕi) , (5.1)

and replaces the two space-like bosons by two sets of Grassmann odd weight (0, 1) fields

(ξi, ηi) (i = 1, 2), defined by

ξi(z)ηj(w) ∼ −ηj(w)ξi(z) ∼ δij

z − w
, T(ξ,ε) = (∂ξiηi) . (5.2)

Giving these fields the following mode expansions

ϕi(z) = qi − ipi ln z + i
∑

n 6=0

αi
n

n
z−n , (5.3)

ξi(z) =
∑

n∈Z

ξi
nz−n , ηi(z) =

∑

n∈Z

ηi
nz−n−1 , (5.4)

the operator product expansions correspond to the commutation rules

[qi, pj ] = −iδij , [αi
m, αj

n] = −mδijδm+n,0 , {ξi
m, ηj

n} = δijδm+n,0 , (5.5)

and the NS vacuum is the state obeying

αi
n|0〉 = ξi

n+1|0〉 = ηi
n|0〉 = 0 for n ≥ 0 , (5.6)

where αi
0 ≡ pi, so that ϕi(z)|0〉, ξi(z)|0〉 and ηi(z)|0〉 are regular and non-vanishing at

z = 0. For operators that do not depend on qi, i.e. O(∂ϕi, ξi, ηi), the normal ordering

: O : is defined via the standard prescription (·), which is an associative and commutative

operation for free fields. The ordering of operators that also depend on qi is defined by

declaring that : qiO := qi : O :. The total Virasoro generators are given by

Ln = −1
2

∑

m∈Z

αi
n−mαi

m −
∑

m∈Z

mξi
mηi

n−m , n 6= 0 , (5.7)

L0 = −1
2pipi −

∑

m>0

αi
−mαi

m +
∑

m>0

m
(
ξi
−mηi

m + ηi
−mξi

m

)
, (5.8)

and the total central charge c = 2 × 1 + 2 × (−2) = −2. The vertex operators

Vλ = : cλ(p) exp(−iλiϕi) : , cλ(p) = exp

(
iπ

2
εijλipj

)
(5.9)
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have conformal weights hλ = −1
2λ2, where λ2 = λiλi, and create states carrying finite

momenta,

|λ〉 = e−iλiqi |0〉 , (pi − λi)|λ〉 = 0 . (5.10)

The vertex operators obey the composition rule

Vλ(z)Vλ′(w) = e
iπ
2

εijλiλ′j
(z − w)−λλ′

: cλ+λ′(p)Vλ(z)Vλ′(w) : . (5.11)

Reversing the order of the product and continuing analytically using w − z = e±iπ(z − w)

yields the following monodromy matrices,

Vλ(z)Vλ′(w) = M±
λ,λ′Vλ′(w)Vλ(z) , (5.12)

M±
λ,λ′ = exp

(
iπ(εij ± δij)λiλ′j

)
. (5.13)

The realization of the symplectic bosons now takes the form

ai = Vλ(i)
ηi = : cλ(i)

(p)e
−iλj

(i)
ϕj

: ηi , (5.14)

āi = V−λ(i)
∂ξi = : c−λ(i)

(p)e
iλj

(i)
ϕj

: ∂ξi , (5.15)

where λ(1) = (1, 0) and λ(2) = (0, 1). The expansions (4.16) correspond to momenta in the

lattice

λi ∈ Z + µ , i = 1, 2 . (5.16)

The ∗ map (4.30), which can be written as (ai(z̄))∗ = iāi(z) and (āi(z̄))∗ = iai(z), requires

(ϕi(z̄))∗ = ϕi(z) , (ηi(z̄))∗ = i∂ξi(z) . (5.17)

The latter map can be implemented in the space of reduced states obeying

ηi
0|Ψ〉 = 0 . (5.18)

Here, the ∗ map and conjugations take the form17

(qi)∗ = qi , (αi
n)∗ = −αi

n , (ηi
n)∗ = −inξi

n , (ξi
n)∗ = − i

n
ηi

n , (5.19)

(qi)τ = qi , (αi
n)τ = −αi

−n , (ηi
n)τ = −ηi

−n , (ξi
n)τ = ξi

−n (5.20)

(qi)† = qi , (αi
n)† = αi

−n , (ηi
n)† = inξi

−n , (ξi
n)† = − i

n
ηi
−n . (5.21)

where n 6= 0 for the fermionic oscillators. In the realization (5.14), the ŝp(4)−1/2 currents

read (cf. (4.3)–(4.6))

Jij = Vλ(i)+λ(j)
χij = : cλ(i)+λ(j)

(p)e−i(ϕi+ϕj) : χij , (5.22)

J̄ ij = V−λ(i)−λ(j)
χ̄ij = : c−λ(i)−λ(j)

(p)ei(ϕi+ϕj) : χ̄ij , (5.23)

Ki
j = Vλ(i)−λ(j)

χi
j = : cλ(i)−λ(j)

(p)ei(ϕj−ϕi) : χi
j , (5.24)

17We define (AB)τ = (−1)ABBτAτ and (AB)† = (−1)ABB†A†.
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where

χij =

{
∂ηiηj , i = j

ηiηj , i 6= j
, χ̄ij =

{
∂2ξi∂ξj , i = j

∂ξi∂ξj , i 6= j
,

χi
j =






−i∂ϕi , i = j

∂ξ2η1 , i = 2, j = 1

∂ξ1η2 , i = 1, j = 2

. (5.25)

We note that while the cocycle factors cλ(p) play a non-trivial role in reproducing the

correct monodromy properties of the symplectic bosons (5.14) and (5.15), they do not

contribute phase factors to the operator product between the currents. Next, we shall turn

to the bosonization of the twist fields.

5.2 Singleton twist fields and their fusion rules

The singleton and anti-singleton states in F[±1] correspond to a set of twist fields

Σ
(e,m)
[±1] =

{
Σ

(e,m;`)
[±1];−1/4

}m

`=−m
, e = ±(m + 1

2) , (5.26)

where m ∈ Z≥0 and m ∈ Z≥0 + 1/2 for scalar and spinor singletons, respectively, that

generate anti-periodic branch cuts in the symplectic bosons in accordance with (4.18) for

P = ±1. This requirement determines the twist fields, and one finds (cf. [21])

Σ
(±m±1/2,m;`)
[±1];−1/4 = V

∓(m+`+
1
2 ,m−`+

1
2)

σ
(m;`)
± , (5.27)

where

σ
(m;`)
+ = (∂ξ1∂2ξ1 · · · ∂m+`ξ1)(∂ξ2∂2ξ2 · · · ∂m−`ξ2) , (5.28)

σ
(m;`)
− = (η1∂η1 · · · ∂m+`−1η1)(η2∂η2 · · · ∂m−`−1η2) , (5.29)

with the convention that ∂ξ1 · · · ∂0ξ1 ≡ 1 idem ξ2, η1 and η2. Indeed, the conformal weights

h
[
Σ

(e,m)
[±1]

]
= −1

4 , since h
[
σ

(m;`)
±

]
= m(m+1)+ `2 and h

[
ei(m±`+1/2)ϕi

]
= −1

2(m± `+ 1
2)2.

In particular, the products Jij(z)Σ
(±1/2,0)
[1];−1/4 (w), J̄ ij(z)Σ

(±1/2,0)
[−1];−1/4(w) and M3(z)Σ

(±1/2,0)
[1];−1/4 (w),

where M3 = (K1
1 − K2

2)/2, have trivial expansions, while

E(z)Σ
(±1/2,0)
[±1];−1/4(w) ∼ ±1/2

z − w
Σ

(±1/2,0)
[±1];−1/4(w) , (5.30)

where E = (K1
1 + K2

2)/2. Similarly, Σ
(±1,1/2;`)
[±1];−1/4 (` = ±1/2) correspond to the spinor

ground states. We note that the anti-periodicity of the branch cut, i.e.

ai(e
2πiz)Σ

(e,m)
[±1] (w) = −ai(z)Σ

(e,m)
[±1] (w) , (5.31)

ai(e2πiz)Σ
(e,m)
[±1] (w) = −ai(z)Σ

(e,m)
[±1] (w) , (5.32)

for |z| > |w|, does not rely on the cocycle factor.
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Turning to the fusion rules in the |P ≤ 1 sector, some of the simplest cases are

Σ
(1/2,0)
[1];−1/4(z)Σ

(−1/2,0)
[−1];−1/4(w) ∼ (z − w)1/2 ,

Σ
(1/2,0)
[1];−1/4(z)Σ

(−3/2,1;1)
[−1];−1/4 (w) ∼ (z − w)3/2J11(w) , (5.33)

where the cocycle factors have been suppressed. More generally, for m + ` ≥ m′ + `′ and

m − ` ≥ m′ − `′ one finds that

Σ
(e,m;`)
[1];−1/4(z)Σ

(e,m′;`′)
[−1];−1/4(w) ∝ (z − w)m−m′+1/2 : (ā1)m+`−m′−`′(ā2)m−`−m′+`′ : (w) ,(5.34)

where the right-hand sides are descendants in the NS sector that can be written in terms of

undifferentiated currents. Related expansions hold for other relations among (m, `,m′, `′).

Similarly, the products of twist fields from D̂[1];−1/4(1/2, 0) and and D̂[0];1/2(−1/2, 1/2)

belong to D̂[1];−1/4(1, 1/2); for example

ā1(z)Σ
(1/2,0)
[1];−1/4(w) ∼

Σ
(1,1/2;1/2)
[1];−1/4

(w)

(z − w)1/2
, ā2(z)Σ

(1/2,0)
[1];−1/4(w) ∼

Σ
(1,1/2;−1/2)
[1];−1/4

(w)

(z − w)1/2
.(5.35)

Proceeding in this fashion, it is straightforward to verify the following fusion rules within

the |P | ≤ 1 sector:

D̂[±1](±1
2 , 0) × D̂[∓1](∓1

2 , 0) = D̂[0](0, 0) , (5.36)

D̂[±1](±1, 1
2 ) × D̂[∓1](∓1, 1

2) = D̂[0](0, 0) , (5.37)

D̂[±1](±1
2 , 0) × D̂[∓1](∓1, 1

2) = D̂[0](−1
2 , 1

2) , (5.38)

D̂[±1](±1
2 , 0) × D̂[0](−1

2 , 1
2) = D̂[±1](±1, 1

2) , (5.39)

D̂[±1](±1, 1
2) × D̂[0](−1

2 , 1
2) = D̂[±1](±1

2 , 0) , (5.40)

D̂[0](−1
2 , 1

2) × D̂[0](−1
2 , 1

2) = D̂[0](0, 0) , (5.41)

where the conformal dimensions are suppressed. Next, let us examine how the product of

two singleton twist fields closes on a massless twist field.

5.3 Massless sector

The formal analysis in section 3 implies that the product of two singleton twist fields in

the P = 1 sector closes on a twist field in the P = 2 sector, forming an affine version of

the Flato-Frønsdal formulae (2.22)-(2.24). As an example, let us consider the product of

two singleton ground-state twist fields:

Σ
(1/2,0)
[1];−1/4(z)Σ

(1/2,0)
[1];−1/4(w) ∼ 1

(z − w)1/2
Σ

(1,0)
[2];−1(w) . (5.42)

As the notation indicates, the field

Σ
(1,0)
[2];−1 ≡ Σ

(1,0;0)
[2];−1 = V−(1,1) = : c−(1,1)e

i(ϕ1+ϕ2) : , (5.43)
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is the ground state of the affine massless scalar representation D̂[2];−1(1, 0), obeying

E(z)Σ
(1,0)
[2];−1(w) ∼ 1

z − w
Σ

(1,0)
[2];−1(w) ,

M3(z)Σ
(1,0)
[2];−1(w) ∼ 0 , (5.44)

Jij,nΣ
(1,0)
[2];−1 = 0 for n ≥ −2 ,

J̄ ij
n Σ

(1,0)
[2];−1 = 0 for n ≥ 2 , (5.45)

in accordance with (4.40) — (4.43). Another illustrative example is

Σ
(1/2,0)
[1];−1/4(z)Σ

(3/2,1;0)
[1];−1/4 (w) ∼

Σ
(2,1;0)
[2];−2 (w)

(z − w)3/2
+

1
4 : c−(2,2)∂ξ1∂ξ2∂e2i(ϕ1+ϕ2) : (w)

(z − w)1/2
, (5.46)

where the leading term is given by

Σ
(2,1;0)
[2];−2 = : c−(2,2)∂ξ1∂ξ2e2i(ϕ1+ϕ2) : . (5.47)

From the operator product expansions

E(z)Σ
(2,1;0)
[2];−2 (w) ∼ 2

z − w
Σ

(2,1;0)
[2];−2 (w)

,M3(z)Σ
(2,1;0)
[2];−2 (w) ∼ 0 , (5.48)

Jij,0Σ
(2,1;0)
[2];−2 = 0 , (5.49)

it follows that Σ
(2,1;0)
[2];−2 can be identified with the ` = 0 ground state of the massless vector

representation D[2];−2(2, 1) defined in (3.27). The subleading term in (5.46) is an admixture

of L−1Σ
(2,1;0)
[2];−2 and J̄12

0 Σ[2];−1(1, 0). More generally, the twist fields Σ
(±m±1,m;`)
[±2];−m−1 correspond-

ing to the massless spin-m ground states of D[±2];−1−m(±m±1,m) with minimal conformal

weight h = −1−m, given in (3.33), arise as the leading terms in the expansions of products

of arbitrary singleton-valued twist fields (these are standard composite massless represen-

tations of the sp(4) generated by MAB,0; see discussion below (3.27)). The result is

Σ
(±m±1,m;`)
[±2];−m−1 = V∓(m+`+1,m−`+1)σ

(m;`)
± , (5.50)

where σ
(m;`)
+ and σ

(m;`)
− are defined in (5.28) and (5.29), respectively. One can verify that

(5.50) agrees with (3.33) and enjoys the properties of a (±2)-twisted primary field, viz.

E(z)Σ
(±m±1,m;`)
[±2];−m−1 (w) ∼ ±(m + 1)

z − w
Σ

(±m±1,m;`)
[±2];−m−1 (w) , (5.51)

M3(z)Σ
(±m±1,m;`)
[±2];−m−1 (w) ∼ ±`

z − w
Σ

(±m±1,m;`)
[±2];−m−1 (w) , (5.52)

Jij,0Σ
(m+1,m;`)
[2];−m−1 (z) = 0 ,

J̄ ij
0 Σ

(−m−1,m;`)
[−2];−m−1 (z) = 0 . (5.53)
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The fusions between P = 2 fields and P = −2 fields produce descendants either to the

identity or the quartet representation. For example we have that

Σ
(1,0)
[2];−1(z)Σ

(−1,0)
[−2];−1(w) ∼ (z − w)2 , (5.54)

Σ
(1,0)
[2];−1(z)Σ

(−3/2,1/2;1/2)
[−2];−3/2 (w) ∼ (z − w)3a1(w) , (5.55)

Σ
(2,1;0)
[2];−2 (z)Σ

(−1,0)
[−2];−1(w) ∼ (z − w)4J̄12(w) , (5.56)

where the symplectic boson a1(z) belongs to D̂[0];1/2(−1/2, 1/2). It is also interesting to

examine the fusion between twist fields with P = 2 and P = −1. For instance,

Σ
(1,0)
[2];−1(z)Σ

(−1/2,0)
[−1];−1/4(w) ∼ (z − w)Σ

(1/2,0)
[1];−1/4(w) , (5.57)

Σ
(1,0)
[2];−1(z)Σ

(−1,1/2;1/2)
[−1];−1/4 (w) ∼ −2(z − w)2(J11,−1Σ

(1,1/2;1/2)
[1];−1/4 )(w) , (5.58)

Σ
(2,1;0)
[2];−2 (z)Σ

(−5/2,3/2;3/2)
[−1];−1/4 (w) ∼ 6(z − w)4(J11,−2Σ

(1,1/2;−1/2)
[1];−1/4 )(w) . (5.59)

In summary, the free-field realization confirms the fusion rules (3.59) derived in section 3

using spectral flow.

5.4 On massive sector and realization of spectral flow

In order to demonstrate how the spectral flow operation acts in the free field basis, let us

begin by looking more closely at the twist fields Σ
(mσ+P/2,m;`)
[P ];h[P ],m

with |P | > 2 (σ = signP )

that minimize18 the conformal weight for a given spin m, namely

Σ
(mσ+P/2,m;`)
[P ];h[P ],m

= σ(m;`)
σ exp

{
i
(
σ(m + `) + P

2 )ϕ1 + (σ(m − `) + P
2 )ϕ2

)}
, (5.60)

h[P ],m = m(1 − |P |) − P 2/4 , (5.61)

where we have suppressed the cocycle factor. These fields obey19

E(z)Σ
(mσ+P/2,m;`)
[P ];h[P ],m

(w) ∼ mσ + P/2

z − w
Σ

(mσ+P/2,m;`)
[P ];h[P ],m

(w) , (5.62)

M3(z)Σ
(mσ+P/2,m;`)
[P ];h[P ],m

(w) ∼ ±`

z − w
Σ

(mσ+P/2,m;`)
[P ];h[P ],m

(w) , (5.63)

Jij,0Σ
(m+P/2,m;`)
[P ];h[P ],m

(z) = 0 , P > 0 , (5.64)

J̄ ij
0 Σ

(−m+P/2,m;`)
[P ];h[P ],m

(z) = 0 , P < 0 , (5.65)

corresponding to massive ground states in D[P ];h[P ],m
(m+P/2,m) ⊂ D[P ]. We note that the

special twist fields Σ
(P/2,0)
[P ];h[P ],0

, which realize P -twisted primary fields in the sense of (3.21)

18There also exist other massive fields in the model with higher conformal weights which will not be

considered here. The maximal conformal weight for a given spin m is given by h′
[P ],m = m(|P | − 1)−P 2/4.

19The detailed fusion rules between generic massive representations are complicated, although bound to

be of the form (3.59), given the validity of composition and distribution rules in (3.41) and (3.42).
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and (3.22), obey conditions that are stronger than those in (5.64). We next expand the

twist fields in modes,

Σ
(e,m;`)
[P ];h[P ],m

(z) =
∑

l∈Z−h[P ],m

(
Σ

(e,m;`)
[P ];h[P ],m

)

l
z−l−h[P ],m , (5.66)

where e = mσ + P/2. The corresponding states,

|[P ];h[P ],m; e,m; `〉 = lim
z→0

Σ
(e,m;`)
[P ];h[P ],m

(z)|0〉 =
(
Σ

(e,m;`)
[P ];h[P ],m

)

−h[P ],m

|0〉 , (5.67)

thus describe singletons for |P | = 1, and massless as well as massive ground states with

minimal conformal weight for |P | > 1. Inserting the mode expansions of the free fields

yields (dropping a constant multiplicative factor)

|[P ];h[P ],m; e,m; `〉 = χ(m;`)
σ ei[σ(m+`)+P/2]q1+i[σ(m−`)+P/2]q2 |0〉 , (5.68)

where

χ
(m;`)
+ = ξ1

−1 · · · ξ1
−m−`ξ

2
−1 · · · ξ2

`−m , χ
(m;`)
− = η1

−1 · · · η1
1−m−`η

2
−1 · · · η2

1+`−m . (5.69)

As expected, the αi
n oscillators drop out in the sector with minimal conformal weight. We

also note that the free-field momenta (p1, p2) = −(σ(m + `) + P/2, σ(m − `) + P/2) are

related to energy eigenvalues and spin projections by the simple formulas e = −(p1 +p2)/2

and ` = −(p1 − p2)/2. The twisted primary ground states |[P ]〉 in (3.30) assume the

particularly simple form20

|[P ]〉 = e
iP
2 (q1+q2)|0〉 , (5.70)

with momentum (p1, p2) = (−P/2,−P/2) and conformal weight h = −pipi/2 = −P 2/4.

These states obey the conditions in (4.40)–(4.43) by construction, with the affine generators

realized in terms of the αi
n and (ξi

n, ηi
n) oscillators. Thus, the spectral flow operation ΩP

acts on states (kets) by multiplication with exp(iP (q1 + q2)/2). This operation changes

the energy eigenvalues and the conformal weights but clearly does not change the spin.

6. Conclusions and outlook

We have examined the ŝo(2,D−1) WZW model at the subcritical level k = −(D−3)/2. It

has a singular vector, given by (3.12), at Virasoro level 2 in the NS sector whose decoupling

induces a spectrum of KM twisted primary scalars Σ[P ], P ∈ Z, connected to the identity

by P units of spectral flow and forming an operator algebra with fusion rule Σ[P ]×Σ[P ′] =

Σ[P+P ′]. The decoupling, or the hyperlight-likeness condition (3.10), constitutes an affine

extension of the equation of motion of the (D + 1)-dimensional conformal particle, i.e. the

20The dual states 〈0| = (|0〉)† obey 〈0|0〉 = 1, which induces the inner product 〈[P ′]|[P ]〉 = δP+P ′,0,

consistent with the definition in (3.57). The states given in (5.68) have dual representations given by

〈[P ]; h[P ],m; e, m; `| = (|[P ]; h[P ],m; e, m; `〉)†.
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scalar singleton. For P 6= 0, the KM module built on Σ[P ] contains a unitary subspace

of representations in the tensor product of |P | singletons or anti-singletons for P > 0 and

P < 0, respectively. In the special case D = 4, we have shown that the spinor singleton

and its composites also solve the decoupling condition (3.10). Moreover, in this case, by

exploiting the isomorphism so(2, 3) ∼ sp(4), we have considered the ŝp(4)−1/2 WZW model

admitting a realization in terms of 4 real-symplectic bosons, containing both scalar and

spinor singletons together with their composites. A bosonization procedure leading to a

free-field model has allowed us in particular to compute the fusion rules explicitly for |P | ≤ 2

and compare with the predictions obtained by spectral flow arguments. We indeed find

an agreement. These results provide an embedding of the Flato-Frønsdal compositeness

theorem, stating that massless fields are made up from singletons in AdS, in a conformal

field theory setting.

The massless sector P = 2 is particularly interesting for the purpose of making contact

with higher-spin gauge theory. As noted below (5.34), the product between a singleton twist

field and an anti-singleton twist field generates an element in the space A = Env(sp(4))/I,

where I is the ideal generated by the singular vacuum vector VAB defined in (2.16). The

space A, which is an associative algebra, plays an important role in higher-spin gauge

theory. In fact, higher-spin master fields are differential forms taking values in various

subspaces of A. In particular, the elements in A that are odd under the anti-automorphism

τ define the higher-spin algebra hs(4) ' ho0(4, 2). It would be interesting to spell out the

exact relation between the higher-spin algebra and the affine algebra.

Another interesting observation deserving further investigation is related to the mod-

ular invariance of the theory and to the locality of the operator algebra. In fact, since

Σ[P ] are scalar particles, the corresponding vertex operators should have a local operator

product with Grassmann even statistics, i.e. the monodromy matrix (5.13) should be equal

to 1 for λ = (P/2, P/2) and λ′ = (P ′/2, P ′/2). This would imply that P ∈ 2Z. More

generally, excited states in the P -twisted sector, created by N symplectic bosons, carry

tensorial representations of Sp(4) for N even and spinorial representations for N odd. The

locality properties of the operator product correspond to appropriate Grassmann statistics

for P,N ∈ 2Z. Interestingly, for these values also the conformal weight becomes an integer,

which assures invariance under the modular transformation T without the need to include

an anti-holomorphic sector. It would be interesting to perform a complete analysis of the

locality of the vertex operator algebra.

We would also like to comment on similar realizations in terms of symplectic spinor

bosons in D = 5 and D = 7. We expect these models to provide affine (massive) extensions

of the massless models constructed in [35, 37]. Here, degeneracies among the states are

lifted by internal gauge symmetries, based on U(1) and SU(2), respectively, in D = 5 and

D = 7. In fact, as shown in [15], the affine extension is critical in D = 7 (where it is related

by triality to a critical Sp(2) gauged model based on symplectic vector bosons). Studying

these explicit realizations would be particularly interesting since, in principle, for special

values of D extra singular vacuum vectors could appear, pointing to striking differences

among models with different values of D. An example of this behavior in D = 7 will be

discussed in a forthcoming paper [20].
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In [20], we will be mainly concerned with the gaugings of the ŝo(2,D − 1)−ε0 WZW

model. In fact, we expect that the gauging of a proper subalgebra h ⊂ g, such as that in

(1.3), would remove all (or almost all) of the non-zero mode excitations in the spectrum.

We would then be left with a topological model containing in its spectrum scalar (and, in

D = 4, spinor) (anti)singletons as well as all of their composites. The gauging, however,

would not necessarily remove all non-unitary states. In particular, in D = 4 the non-unitary

anti-spinor singleton zero-mode representation D−
1/2 would survive. The truncation of

this representation, along with other representations with the wrong space-time statistics,

should be controlled by a GSO-like projection. We expect the resulting GSO-projected

gauged WZW model to be unitary and to consist of scalar singleton and anti-singleton

representations together with all of their tensor products.

Finally, we would like to say a few words on how a proper gauging of the WZW models

discussed in this paper could fit in a bigger picture hopefully providing an alternative

approach to string quantization in AdS spacetime. As mentioned in the Introduction, an

alternative to the conventional interpretation of the target space as a space-time manifold

is to regard it as an internal fiber [15]. The WZW model would then be thought of as a

device to realize the internal symmetry algebra, together with a star product and a trace

operation. The spacetime would appear only upon the operation of unfolding [13]. A crucial

test of this idea would then be to set the issue whether unfolding could be implemented

consistently in conjunction with the WZW model and, if so, whether the correct free space-

time field equations [51] for the fields in the model could be reproduced. Our work is a at

very preliminary stage and the understanding of these issues is left for future work.
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A. Decomposition formulae for P = 0, 1

In this appendix we shall derive the decomposition (4.46) of the P -twisted oscillator Fock

spaces F̂[P ] into irreps D̂[P ](e0, s0) of ŝo(2, 3)−1/2. The decompositions for different values

of P are related by spectral flow, which means that it suffices to show (4.46) for one value

of P . In this appendix we shall do this for P = 1 and P = 0 using oscillator methods

(without resorting to spectral flow), viewing one of the cases as a check of the spectral flow
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formalism. In general, the Fock spaces factorize

F̂[P ] = F̂ (1)
[P ] ⊗ F̂ (2)

[P ] , (A.1)

where F̂ (i)
[P ] generated by the action of ai(z) and ai(z) on |[P ]〉 for fixed i = 1, 2. The

ŝo(2, 3)−1/2 irreps decompose in a corresponding way under ŝo(2, 3)−1/2 → ŝp(2)
(1)
−1/2 ⊕

ŝp(2)
(2)
−1/2, where the affine sp(2) currents are given in (4.14). Thus, in order to decompose

F̂[P ] under ŝo(2, 3)−1/2 we can first decompose F̂ (i)
[P ] under ŝp(2)

(i)
−1/2 and then examine the

action of the off-diagonal ŝo(2, 3)−1/2 currents on the tensor product.

Case P = 1

Lemma 1. For fixed i, the Fock space F̂ (i)
[1] decomposes under ŝp(2)

(i)
−1/2 as

F̂ (i)
[1] = D̂

(i)
[1](

1
4 ) ⊕ D̂

(i)
1] (3

4 ) , (A.2)

where D̂
(i)
[1](j) are built on the two metaplectic representations D(j) of sp(2) with j =

1/4, 3/4,

J+
n |j〉(i) = 0 for n ≥ 1 , (A.3)

(J3
n − jδn0)|j〉(i) = 0 for n ≥ 0 , (A.4)

J−
n |j〉(i) = 0 for n ≥ −1 . (A.5)

We note that D(1/4) and D(3/4) are isomorphic to the even and odd states, respectively, of

the Fock space of a single oscillator (in (A.5), the J−
−1 condition removes a singular vector

that is identically zero in the oscillator realization).

Lemma 2. The off-diagonal ŝp(4)−1/2 charges {J̄12
m ,K12

n ,K21
n , J12

n } act on tensor prod-

ucts as follows:

D̂
(1)
[1] (j) ⊗ D̂

(2)
[1] (j

′) 7→ D̂
(1)
[1] (1 − j) ⊗ D̂

(2)
[1] (1 − j′) . (A.6)

It follows that ŝp(4)−1/2 acts irreducibly on

D̂[1](
1
2 , 0) =

[
D̂

(1)
[1] (

1
4 ) ⊗ D̂

(2)
[1] (

1
4 )

]
⊕

[
D̂

(1)
[1] (

3
4 ) ⊗ D̂

(2)
[1] (

3
4)

]
, (A.7)

D̂[1](1,
1
2) =

[
D̂

(1)
[1] (

1
4 ) ⊗ D̂

(2)
[1] (

3
4 )

]
⊕

[
D̂

(1)
[1] (

3
4 ) ⊗ D̂

(2)
[1] (

1
4)

]
. (A.8)

We note that the ground state of D̂[1](
1
2 , 0) is given by |1/4〉(1) ⊗ |1/4〉(2), while |3/4〉(1) ⊗

|3/4〉(2) = J̄12
0 |1/4〉(1) ⊗ |1/4〉(2) .

Combining Lemmas 1 and 2 with the factoring formula (A.1) we conclude that F̂[1]

decomposes into the direct sum of (A.7) and (A.8), as stated in (4.46) for P = 1.
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Derivation of Lemma 1: To simplify the notation, let us drop the (i) superscripts and

define (ān, an) = (āi
n, ai,n) and F̂ = F̂ (i)

[1] . We decompose F̂ into Virasoro levels,

F̂ =
∞⊕

`=0

F̂` , (L0 − ` + 1
8)F̂` = 0 . (A.9)

We seek the decomposition into irreducible ŝp(2)−1/2 representations,

F̂ =
⊕

`,j

D̂`(j) , (A.10)

where D̂`(j) is built on the ground state |`; j〉 at level ` with sp(2) spin j. There are two

ground states at level 0, namely

|0; 1
4 〉 = |[1]〉 , |0; 3

4〉 = ā0|[1]〉 . (A.11)

Let us define

M̂ = D̂0(
1
4) ⊕ D̂0(

3
4) =

⊕

`

M̂` , (A.12)

and consider the spaces Q̂` = F̂`/M̂`. By definition, D̂`(j) does not contain any singular

vectors, so that if |`〉 is a ground state at level ` ≥ 1, then |`〉 ∈ Q̂`. Thus, if dim Q̂` = 0 for

` ≥ 1 then there are no ground states for ` ≥ 1. Conversely, if there are no ground states

for ` ≥ 1 then dim Q̂` = 0 for ` ≥ 1 (since the first occurrence of dim Q̂` > 0 would be tied

to the existence of such a ground state). Hence, dim Q̂` = 0 for ` ≥ 1 is equivalent to that

there are no ground states for ` ≥ 1. This can be checked explicitly for ` ≤ 3 (either by

showing there are no ground states or by simply rearranging oscillator excitations into the

form of KM descendants in M̂). We proceed by induction. A state |`;N〉 ∈ F̂` with fixed

affine sp(2) spin, say (J3
0 − N

2 − 1
4)|`;N〉 = 0 (N ∈ Z), can be expanded as

|`;N〉 =
∑

{m}, {n}
P

m +
P

n = `

N ′ ≡ N −
P

m 1 +
P

n 1 ≥ 0

A{m},{n}

∏

m

ā−m

∏

n

a−n|N ′〉 , (A.13)

where A{m},{n} are constants, {m} and {n} are sets of positive integers, and |N ′〉 =

(a0)
N ′ |[1]〉 belong to D(1/4) and D(3/4) for N ′ even and odd, respectively. In each mono-

mial, at least one m or n must be positive. Suppose m > 0. By the induction assumption,

the monomial can then be rewritten as ā−m
∑

{k,α}

∏
k,α Jα

−k|N ′′〉 where k are positive in-

tegers and N ′′ is fixed by spin conservation. By moving the KM charges to the left, the

monomial can be rearranged into a−` and ā−` excitations plus descendants in M̂`. An

analogous statement holds if n > 0. Thus,

|`;N〉 = Aā−`|N − 1〉 + Ba−`|N + 1〉 + |`;N ; desc〉 , |`;N ; desc〉 ∈ M̂` , (A.14)
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where A and B are constants (we note that this shows that dim Q̂` ≤ 2), so that

dim Q̂` = 0 if

Jα
1 |`;N〉 = 0 ⇒ A = B = 0 . (A.15)

We note that the absence of singular vectors in M` assures that for fixed A and B the

constraint Jα
1 |`;N〉 = 0 has a unique solution for |N, `; desc〉 (which may of course be

trivial), since if |N, `; desc〉′ is another solution then Jα
1 (|N, `; desc〉 − |N, `; desc〉′) = 0

implies |N, `; desc〉 − |N, `; desc〉′ = 0. We now expand

|N, `; desc〉 =
∑̀

k=2

|N, `; (k)〉 , (A.16)

where |N, `; (k)〉 is k’th order in oscillators (a−n, ā−n) with n ≥ 1. The strategy is to

work order by order in k and arrive at some finite order at A = B = 0 as a compatibility

condition. Canceling the linear terms in the J+
1 and J−

1 conditions yields

|N, `; (2)〉 = −Bā−`+1a−1|N〉 − A

N
a−`+1ā−1|N〉 . (A.17)

Canceling the linear terms in the J3
1 condition then yields the compatibility condition

A + NB = 0 . (A.18)

In the next order one finds

|N, `; (3)〉 =
A

N
ā−`+2ā−1a−1|N − 1〉 +

B

N + 1
a−`+2a−1ā−1|N + 1〉 , (A.19)

and the compatibility conditions (for ` > 3)

A − NB = 0 ,
N − 1

N
A = 0 ,

1

N + 1
B = 0 , (A.20)

implying A = B = 0, which completes the proof of Lemma 1.

Case P = 0. The analysis parallels that of P = 1. Let us assume the decomposition

F̂ (i)
[0] = D̂

(i)
[0](0) ⊕ D̂

(i)
[0](−1

2) , (A.21)

with ŝp(2)
(i)
−1/2 ground states given by the singlet |[0]〉 and the doublet (ai

−1/2|[0]〉, āi
−1/2|[0]〉)

(fixed i), with lowest sp(2)(i) spins j = 0 and j = −1/2, respectively. The off-diagonal

ŝp(4)−1/2 charges then act on tensor products as follows

D
(1)
[0] (j) ⊗ D

(2)
[0] (j

′) 7→ D
(1)
[0] (−1

2 − j) ⊗ D
(2)
[0] (−1

2 − j′) , (A.22)

implying that ŝp(4)−1/2 acts irreducibly on

D̂[0](0, 0) =
[
D

(1)
[0]

(0) ⊗ D
(2)
[0]

(0)
]
⊕

[
D

(1)
[0]

(−1
2 ) ⊗ D

(2)
[0]

(−1
2)

]
, (A.23)

D̂[0](1,
1
2) =

[
D

(1)
[0] (0) ⊗ D

(2)
[0] (−1

2 )
]
⊕

[
D

(1)
[0] (−1

2) ⊗ D
(2)
[0] (0)

]
. (A.24)
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Combined with the factoring formula (A.1), this yields (4.46) for P = 0. Finally, to derive

(A.21) we decompose into Virasoro levels ` ∈ {0, 1
2 , 1, 3

2 , . . . }. The first two levels contain

the ground states, and there are no new ground states at levels ` = 1 and ` = 3/2. We

proceed by induction on `, treating ` ∈ Z + 1/2 and ` ∈ Z as separate cases. The steps are

similar to those for P = 1. For example, in case ` ∈ Z + 1/2, the induction assumption

implies |`〉 = (Aa−` + Bā−`)|0〉 + |`; desc〉 where |`; desc〉 =
∑

k≥1 |`; (2k + 1)〉 ∈ D̂[0](−1
2 ).

The J±
1 conditions then yield

|`; (3)〉 = (−Aa−`+1(ā−1/2)
2 + Bā−`+1(a−1/2)

2)|0〉 , (A.25)

which is annihilated by J3
1 to lowest order in oscillators only for A = B = 0 (for ` ≥ 3/2).
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